These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: FHL2 binds calcineurin and represses pathological cardiac growth.
    Author: Hojayev B, Rothermel BA, Gillette TG, Hill JA.
    Journal: Mol Cell Biol; 2012 Oct; 32(19):4025-34. PubMed ID: 22851699.
    Abstract:
    Stress-induced hypertrophic growth of the heart predisposes the heart to arrhythmia, contractile dysfunction, and clinical heart failure. FHL2 (four-and-a-half LIM domain protein 2) is expressed predominantly in the heart, and inactivation of the gene coding for FHL2 leads to exaggerated responsiveness to adrenergic stress. Activation of calcineurin occurs downstream of β-adrenergic signaling and is required for isoproterenol-induced myocardial hypertrophy. Based on these facts, we hypothesized that FHL2 suppresses stress-induced activation of calcineurin. FHL2 is upregulated in mouse hearts exposed to isoproterenol, a β-adrenergic agonist, and isoproterenol-induced increases in the NFAT target genes RCAN1.4 and BNP were amplified significantly in FHL2 knockout (FHL2(-/-)) mice compared with levels in wild-type (WT) mice. To determine whether the effect of FHL2 on NFAT target gene transcript levels occurred at the level of transcription, HEK 293 cells and neonatal rat ventricular myocytes (NRVMs) were transfected with a luciferase reporter construct harboring the NFAT-dependent promoters of either RCAN1 or interleukin 2 (IL-2). Consistent with the in vivo data, small interfering RNA (siRNA) knockdown of FHL2 led to increased activation of these promoters by constitutively active calcineurin or the calcium ionophore ionomycin. Importantly, activation of the RCAN1 promoter by ionomycin, in control and FHL2 knockdown cells, was abolished by the calcineurin inhibitor cyclosporine, confirming the calcineurin dependence of the response. Overexpression of FHL2 inhibited activation of both NFAT reporter constructs. Furthermore, NRVMs overexpressing FHL2 exhibited reduced hypertrophic growth in response to constitutively active calcineurin, as measured by cell cross-sectional area and fetal gene expression. Finally, immunostaining in isolated adult cardiomyocytes revealed colocalization of FHL2 and calcineurin predominantly at the sarcomere and activation of calcineurin by endothelin-1-facilitated interaction between FHL2 and calcineurin. FHL2 is an endogenous, agonist-dependent suppressor of calcineurin.
    [Abstract] [Full Text] [Related] [New Search]