These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Respirable antimony and other trace-elements inside and outside an elementary school in Flagstaff, AZ, USA. Author: Majestic BJ, Turner JA, Marcotte AR. Journal: Sci Total Environ; 2012 Oct 01; 435-436():253-61. PubMed ID: 22858533. Abstract: Because people spend almost 90% of their time indoors, ambient air monitors may severely underestimate actual exposure to atmospheric particulate matter (PM). Therefore, it becomes increasingly important to better understand the microenvironments where people are spending their time. For preadolescent children, the best estimates of exposure may be inside of their school. In this study, 11 size fractions of PM were collected inside and outside of an elementary school in Flagstaff, AZ, USA. In particles<1 μm (PM1), the total mass indoors was similar to the mass outdoors (indoor:outdoor, I:O, ratio=0.92 ± 0.16). In the PM1-10 fraction, however, the mass concentration inside the school was highly elevated relative to outside the school (I:O ratios=13 ± 3). Mass concentrations of 27 elements were analyzed by ICP-MS. For all metals except for antimony (Sb), the PM1 and PM1-10 I:O ratios are found to be similar to the overall PM mass (near 1 and 13, respectively). In addition, indoor and outdoor particle size distributions reveal a crustal character for every element except Cu, Zn, Pb, and Sb. Therefore, we hypothesize that most of the PM mass inside the school is a result of transport from outside the school followed by resuspension from floors and clothing. In the PM1 fraction, the indoor mass of Sb was 86 times greater than the outdoor mass and had an air concentration of 17 ngm(-3) - greater than many urban areas around the world. Cu:Sb ratios and size distribution functions suggest that the excess source of PM1 indoor Sb results from the suspension of embedded Sb (used as a flame retardant) in the carpeting. This is the first study to observe elevated submicron Sb in schools and further studies are required to determine if this is a widespread health risk.[Abstract] [Full Text] [Related] [New Search]