These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Compensation of horizontal canal related activity in the medial vestibular nucleus following unilateral labyrinth ablation in the decerebrate gerbil. I. Type I neurons. Author: Newlands SD, Perachio AA. Journal: Exp Brain Res; 1990; 82(2):359-72. PubMed ID: 2286238. Abstract: The spontaneous activity and dynamic responses to two frequencies (1.3 and 0.13 Hz) of sinusoidal angular horizontal head acceleration of type I neurons in the medial vestibular nucleus were recorded bilaterally in decerebrate Mongolian gerbils (Meriones unguiculatus) under three experimental conditions; normal labyrinth intact, acutely following unilateral labyrinthine lesion, and four to seven weeks following labyrinthine lesion. The mean spontaneous activity and number of detected type I neurons decreased immediately ipsilateral to the lesion but recovered significantly with time. In contrast, spontaneous activity on the contralateral side increased during compensation following hemilabyrinthectomy. The mean response gains at both frequencies of head oscillation were depressed bilaterally and asymmetrically acutely following the lesion such that the response gain of cells on the intact side exceeded that of the neurons recorded on the injured side. After compensation the number of detected type I neurons on the side ipsilateral to the injury increased but remained below normal levels. The mean gains remained depressed but became symmetric with compensation as a result of improvement in the response of ipsilateral neurons. The phase of responses were significantly advanced in the compensated animals. Although response gain is not fully restored, the linearity of the dynamic modulation in compensated animals is improved as evidenced by a continuous modulation of the increased spontaneous activity of neurons contralateral to the hemilabyrinthectomy. It is proposed that this effect is related to the concurrent improvement in the linearity of the horizontal vestibulo-ocular response. Electrical cathodal polarization of the vestibular nerve ipsilateral to the ablated labyrinth was utilized to investigate the relationship between recovery of spontaneous activity and dynamic function. Acutely following hemilabyrinthectomy, cathodal polarization restored activity in second-order type I neurons to near normal levels but their response gain to head rotation remained depressed. Similar galvanic stimulation in compensated animals also elevated ipsilateral spontaneous activity. As in the acute preparation, such stimulation did not modify the response gain or phase. Thus, the improvement in response of type I neurons in the compensated gerbil was not a direct consequence of restoration of spontaneous activity on the side of the injury.[Abstract] [Full Text] [Related] [New Search]