These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparison of UV and UV/H2O2 treatments using excilamps for removal of monochlorophenols in the molecular and anionic form.
    Author: Matafonova GG, Batoev VB.
    Journal: J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(13):2077-83. PubMed ID: 22871005.
    Abstract:
    The efficiency of UV/H(2)O(2) treatment using KrCl (222 nm) and XeBr (282 nm) excilamps was examined for removal of 2-chlorophenol (2-CP) and 4-chlorophenol (4-CP) from aqueous solution in the molecular form (pH 2 and un-adjusted pH) and anionic form (at pH 11). UV/H(2)O(2) treatment of 2- or 4-CP was initially carried out at un-adjusted pH with varying molar ratios of chlorophenol and H(2)O(2). The para-chlorobenzoic acid was used as a hydroxyl radical (•OH) probe compound. UV/H(2)O(2) treatment of 2- and 4-CP with a molar ratio of 1:25 at ambient pH and a fluence of 4.1 J/cm(2) provided a significant decrease in chemical oxygen demand (COD). Under these conditions, the •OH exposure was found to increase from 0.5 × 10(-11) and 0.4 × 10(-11) to 1.8 × 10(-11) and 1.3 × 10(-11) M min for KrCl and XeBr excilamp, respectively. Compared with direct UV photolysis, the pseudo-first-order fluence-based rate constants of 2- and 4-CP degradation in UV/H(2)O(2) process at a molar ratio of 1:25 were significantly higher for molecular 2-CP and 4-CP in the anionic form using both excilamps. Detailed information on UV fluence and/or the exposure to •OH radicals is proposed to accurately compare studies reporting the effectiveness of AOPs based on excilamps.
    [Abstract] [Full Text] [Related] [New Search]