These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cointegrate-resolution of toluene-catabolic transposon Tn4651: determination of crossover site and the segment required for full resolution activity.
    Author: Yano H, Genka H, Ohtsubo Y, Nagata Y, Top EM, Tsuda M.
    Journal: Plasmid; 2013 Jan; 69(1):24-35. PubMed ID: 22878084.
    Abstract:
    Tn3-family transposon Tn4651 from Pseudomonas putida mt-2 plasmid pWW0 carries two divergently transcribed genes, tnpS and tnpT, for cointegrate-resolution. While tnpS encodes a tyrosine recombinase, tnpT encodes a protein that shows no homology to any other characterized protein. The Tn4651 resolution site was previously mapped within the 203-bp fragment that covered the tnpS and tnpT promoter region. To better understand the molecular mechanisms underlying the Tn4651 cointegrate-resolution, we determined the extent of the functional resolution site (designated the rst site) of Tn4651 and the location of the crossover site for the cointegrate-resolution. Deletion analysis of the rst region localized the fully functional rst site to a 136-bp segment. The analysis of the site-specific recombination between Tn4651 rst and a rst variant from the Tn4651-related transposon, Tn4661, indicated that the crossover occurs in the 33-bp inverted repeat region, which separates the 136-bp functional rst site into the tnpS- and tnpT-proximal segments. Electrophoretic mobility shift assays demonstrated specific binding of TnpT to the 20-bp inverted repeat region in the tnpT-proximal segment. The requirement for accessory sequences on both sides of the crossover site and the involvement of the unique DNA-binding protein TnpT suggest that the Tn4651-specified resolution system uses a different mechanism than other known resolution systems. Furthermore, comparative sequence analysis for Tn4651-related transposons revealed the occurrence of DNA exchange at the rst site among different transposons, suggesting an additional role of the TnpS-TnpT-rst system in the evolution of Tn4651-related transposons.
    [Abstract] [Full Text] [Related] [New Search]