These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Lipid peroxidation and antioxidant enzymes activity in avian semen. Author: Partyka A, Lukaszewicz E, Niżański W. Journal: Anim Reprod Sci; 2012 Oct; 134(3-4):184-90. PubMed ID: 22884394. Abstract: The present study compared the antioxidant system and lipid peroxidation in semen of two avian species: chicken and goose. The experiment was conducted on Greenleg Partridge roosters and White Koluda(®) ganders, each represented by 10 mature males. Malondialdehyde (MDA) concentration, catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were determined in sperm cells and seminal plasma. In gander spermatozoa, the amount of MDA was 10 times greater (P<0.01) than in rooster spermatozoa. Each of the investigated antioxidant enzymes had greater (P<0.01) activity in goose than chicken sperm. Catalase activity was detected in seminal plasma and spermatozoa from both studied species for the first time. In seminal plasma, the activity of GPx was two times greater (P<0.01) in the White Koluda(®) than in chickens, whereas SOD activity was less (P<0.01) than in chickens. This is the first study describing the presence of CAT in avian semen and the occurrence of indicator of lipid peroxidation (LPO) in geese. Data from the present study clearly show the species-specific differences in the activity of antioxidant defense and LPO. The greater amount of lipid peroxidation and greater activity of antioxidant enzymes in goose semen might suggest that spermatozoa were under greater oxidative stress and the enzymes were not utilized for the protection of functionally and structurally impaired cells. In turn, in fresh chicken semen a lesser activity of antioxidant enzymes accompanied with a lesser lipid peroxidation amount and good semen quality could indicate that fowl spermatozoa were under oxidative stress, but the enzymes were employed to protect and maintain sperm quality.[Abstract] [Full Text] [Related] [New Search]