These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Modulation of lipopolysaccharide-induced NF-κB signaling pathway by 635 nm irradiation via heat shock protein 27 in human gingival fibroblast cells. Author: Lim W, Kim J, Kim S, Karna S, Won J, Jeon SM, Kim SY, Choi Y, Choi H, Kim O. Journal: Photochem Photobiol; 2013; 89(1):199-207. PubMed ID: 22892019. Abstract: Heat shock protein-27 (HSP27) is a member of the small HSP family which has been linked to the nuclear factor-kappa B (NF-κB) signaling pathway regulating inflammatory responses. Clinical reports have suggested that low-level light therapy/laser irradiation (LLLT) could be an effective alternative treatment to relieve inflammation during bacterial infection associated with periodontal disease. However, it remains unclear how light irradiation can modulate the NF-κB signaling pathway. We examined whether or not 635 nm irradiation could lead to a modulation of the NF-kB signaling pathway in HSP27-silenced cells and analyzed the functional cross-talk between these factors in NF-κB activation. The results showed that 635 nm irradiation led to a decrease in the HSP27 phosphorylation, reactive oxygen species (ROS) generation, I-κB kinase (IKK)/inhibitor of κB (IκB)/NF-κB phosphorylation, NF-κB p65 translocation and a subsequent decrease in the COX-1/2 expression and prostaglandin (PGE(2) ) release in lipopolysaccharide(LPS)-induced human gingival fibroblast cells (hGFs). However, in HSP27-silenced hGFs, no obvious changes were observed in ROS generation, IKK/IκB/NF-κB phosphorylation, NF-κB p65 translocation, nor in COX-1/2 expression, or PGE(2) release. This could be a mechanism by which 635 nm irradiation modulates LPS-induced NF-κB signaling pathway via HSP27 in inflammation. Thus, HSP27 may play a role in regulating the anti-inflammatory response of LLLT.[Abstract] [Full Text] [Related] [New Search]