These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Immobilization of carbonic anhydrase enzyme purified from Bacillus subtilis VSG-4 and its application as CO(2) sequesterer. Author: Oviya M, Giri SS, Sukumaran V, Natarajan P. Journal: Prep Biochem Biotechnol; 2012; 42(5):462-75. PubMed ID: 22897768. Abstract: The purification, immobilization, and characterization of carbonic anhydrase (CA) secreted by Bacillus subtilis VSG-4 isolated from tropical soil have been investigated in this work. Carbonic anhydrase was purified using ammonium sulfate precipitation, Sephadex-G-75 column chromatography, and DEAE-cellulose chromatography, achieving a 24.6-fold purification. The apparent molecular mass of purified CA obtained by SDS-PAGE was found to be 37 kD. The purified CA was entrapped within a chitosan-alginate polyelectrolyte complex (C-A PEC) hydrogel for potential use as an immobilized enzyme. The optimum pH and temperature for both free and immobilized enzymes were 8.2 and 37°C, respectively. The immobilized enzyme had a much higher storage stability than the free enzyme. Certain metal ions, namely, Co(2+), Cu(2+), and Fe(3+), increased the enzyme activity, whereas CA activity was inhibited by Pb(2+), Hg(2+), ethylenediamine tetraacetic acid (EDTA), 5,5'-dithiobis-(2-nitrobenzoic acid (DTNB), and acetazolamide. Free and immobilized CAs were tested further for the targeted application of the carbonation reaction to convert CO(2) to CaCO(3). The maximum CO(2) sequestration potential was achieved with immobilized CA (480 mg CaCO(3)/mg protein). These properties suggest that immobilized VSG-4 carbonic anhydrase has the potential to be used for biomimetic CO(2) sequestration.[Abstract] [Full Text] [Related] [New Search]