These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Calcium phosphopeptides -- mechanisms of action and evidence for clinical efficacy.
    Author: Cochrane NJ, Reynolds EC.
    Journal: Adv Dent Res; 2012 Sep; 24(2):41-7. PubMed ID: 22899678.
    Abstract:
    Phosphoproteins/phosphopeptides with clusters of acidic residues are found throughout nature, where they aid in the prevention of unwanted precipitation of solid calcium phosphates. The acidic residues, particularly phosphoserine, interact with calcium and stabilize clusters of calcium and phosphate. Saliva and milk are two examples of biological fluids that contain such phosphoprotein/phosphopeptide-stabilized calcium phosphates, and both share a similar evolutionary pathway. Saliva has been shown to have remineralization potential and is of critical importance in maintaining the mineral content of teeth in the oral environment. Milk can be enzymatically modified to release casein phosphopeptides that contain the clusters of residues that allow milk to stabilize high concentrations of calcium and phosphate. These casein phosphopeptide-stabilized amorphous calcium phosphate nanocomplexes (CPP-ACP) can stabilize even higher concentrations of calcium and phosphate than milk and can be considered a salivary biomimetic, since they share many similarities to statherin. The mechanisms of action and the growing body of scientific evidence that supports the use of CPP-ACP to augment fluoride in inhibiting demineralization and enhancing the remineralization of white-spot lesions are reviewed.
    [Abstract] [Full Text] [Related] [New Search]