These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mycotoxin-contaminated diets and deactivating compound in laying hens: 1. effects on performance characteristics and relative organ weight. Author: Lee JT, Jessen KA, Beltran R, Starkl V, Schatzmayr G, Borutova R, Caldwell DJ. Journal: Poult Sci; 2012 Sep; 91(9):2089-95. PubMed ID: 22912441. Abstract: The current experiment was conducted to determine the effect of mycotoxin-contaminated diets with aflatoxin (AFLA) and deoxynivalenol (DON) and dietary inclusion of deactivation compound on layer hen performance during a 10-wk trial. The experimental design consisted of a 4 × 2 factorial with 4 toxin levels: control, low (0.5 mg/kg AFLA + 1.0 mg/kg DON), medium (1.5 mg/kg AFLA + 1.5 mg/kg DON), and high (2.0 mg/kg AFLA + 2.0 mg/kg DON) with or without the inclusion of deactivation compound. Three hundred eighty-four 25-wk-old laying hens were randomly assigned to 1 of the 8 treatment groups. Birds were fed contaminated diets for a 6-wk phase of toxin administration followed by a 4-wk recovery phase, when all birds were fed mycotoxin-free diets. Twelve hens from each treatment were subjected to necropsy following each phase. Relative liver and kidney weights were increased (P < 0.05) at the medium and high toxin levels following the toxin phase, but the deactivation compound reduced (P < 0.05) relative liver and kidney weights following the recovery period. The high toxin level decreased (P < 0.05) feed consumption and egg production during the toxin period, whereas the deactivation compound increased (P < 0.05) egg production during the first 2 wk of the toxin phase. Egg weights were reduced (P < 0.05) in hens fed medium and high levels of toxin. An interaction existed between toxin level and deactivation compound inclusion with regard to feed conversion (g of feed/g of egg). High inclusion level of toxins increased feed conversion compared with the control diet, whereas deactivation compound inclusion reduced feed conversion to a level comparable with the control. These data indicate that deactivation compound can reduce or eliminate adverse effects of mycotoxicoses in peak-performing laying hens.[Abstract] [Full Text] [Related] [New Search]