These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A steady-state visual evoked potential approach to individual face perception: effect of inversion, contrast-reversal and temporal dynamics.
    Author: Rossion B, Prieto EA, Boremanse A, Kuefner D, Van Belle G.
    Journal: Neuroimage; 2012 Nov 15; 63(3):1585-600. PubMed ID: 22917988.
    Abstract:
    Presentation of a face stimulus for several seconds at a periodic frequency rate leads to a right occipito-temporal evoked steady-state visual potential (SSVEP) confined to the stimulation frequency band. According to recent evidence (Rossion and Boremanse, 2011), this face-related SSVEP is largely reduced in amplitude when the exact same face is repeated at every stimulation cycle as compared to the presentation of different individual faces. Here this SSVEP individual face repetition effect was tested in 20 participants stimulated with faces at a 4 Hz rate for 84 s, in 4 conditions: faces upright or inverted, normal or contrast-reversed (2×2 design). To study the temporal dynamics of this effect, all stimulation sequences started with 15s of identical faces, after which, in half of the sequences, different faces were introduced. A larger response to different than identical faces at the fundamental (4 Hz) and second harmonic (8 Hz) components was observed for upright faces over the right occipito-temporal cortex. Weaker effects were found for inverted and contrast-reversed faces, two stimulus manipulations that are known to greatly affect the perception of facial identity. Addition of the two manipulations further decreased the effect. The phase of the fundamental frequency SSVEP response was delayed for inverted and contrast-reversed faces, to the same extent as the latency delay observed at the peak of the face-sensitive N170 component observed at stimulation sequence onset. Time-course analysis of the entire sequence of stimulation showed an immediate increase of 4Hz amplitude at the onset (16th second) of different face presentation, indicating a fast, large and frequency-specific release to individual face adaptation in the human brain. Altogether, these observations increase our understanding of the characteristics of the human steady-state face potential response and provide further support for the interest of this approach in the study of the neurofunctional mechanisms of face perception.
    [Abstract] [Full Text] [Related] [New Search]