These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of ambient GABA levels by neuron-glia signaling for reliable perception of multisensory events.
    Author: Hoshino O.
    Journal: Neural Comput; 2012 Nov; 24(11):2964-93. PubMed ID: 22920850.
    Abstract:
    Activities of sensory-specific cortices are known to be suppressed when presented with a different sensory modality stimulus. This is referred to as cross-modal inhibition, for which the conventional synaptic mechanism is unlikely to work. Interestingly, the cross-modal inhibition could be eliminated when presented with multisensory stimuli arising from the same event. To elucidate the underlying neuronal mechanism of cross-modal inhibition and understand its significance for multisensory information processing, we simulated a neural network model. Principal cell to and GABAergic interneuron to glial cell projections were assumed between and within lower-order unimodal networks (X and Y), respectively. Cross-modality stimulation of Y network activated its principal cells, which then depolarized glial cells of X network. This let transporters on the glial cells export GABA molecules into the extracellular space and increased a level of ambient (extrasynaptic) GABA. The ambient GABA molecules were accepted by extrasynaptic GABA(a) receptors and tonically inhibited principal cells of the X network. Cross-modal inhibition took place in a nonsynaptic manner. Identical modality stimulation of X network activated its principal cells, which then activated interneurons and hyperpolarized glial cells of the X network. This let their transporters import (remove) GABA molecules from the extracellular space and reduced tonic inhibitory current in principal cells, thereby improving their gain function. Top-down signals from a higher-order multimodal network (M) contributed to elimination of the cross-modal inhibition when presented with multisensory stimuli that arose from the same event. Tuning into the multisensory event deteriorated if the cross-modal inhibitory mechanism did not work. We suggest that neuron-glia signaling may regulate local ambient GABA levels in order to coordinate cross-modal inhibition and improve neuronal gain function, thereby achieving reliable perception of multisensory events.
    [Abstract] [Full Text] [Related] [New Search]