These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differential effects of soluble epoxide hydrolase inhibition and CYP2J2 overexpression on postischemic cardiac function in aged mice. Author: Chaudhary KR, Zordoky BN, Edin ML, Alsaleh N, El-Kadi AO, Zeldin DC, Seubert JM. Journal: Prostaglandins Other Lipid Mediat; 2013; 104-105():8-17. PubMed ID: 22922020. Abstract: Cardioprotective effects of epoxyeicosatrienoic acids (EETs) have been demonstrated in models of young mice with either the cardiomyocyte specific over-expression of cytochrome P450 2J2 (CYP2J2 Tr) or deletion of soluble epoxide hydrolase (sEH null). In this study we examined differences in EET-induced cardioprotection in young (2 months) and aged (12 months) CYP2J2 Tr and sEHnull mice using Langendorff isolated perfused heart model. Improved postischemic functional recovery was observed in both young and aged sEH null mice compared to age matched WT. Conversely, the cardioprotective effect observed in young CYP2J2 Tr was lost in aged CYP2J2 Tr mice. The loss of cardioprotection in aged CYP2J2 Tr was regained following perfusion with the sEH inhibitor t-AUCB. Data demonstrated increased levels of leukotoxin diol (DiHOME) and oxidative stress as well decreased protein phosphatase 2A (PP2A) activation in aged CYP2J2 Tr. In conclusion, inhibition of sEH and EET-induced cardioprotection is maintained in aged mice. However, the loss of protective effects observed in aged CYP2J2 Tr might be attributed to increased levels of DiHOME, oxidative stress and/or decreased PP2A activity.[Abstract] [Full Text] [Related] [New Search]