These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Label-free electrochemical aptasensor for sensitive thrombin detection using layer-by-layer self-assembled multilayers with toluidine blue-graphene composites and gold nanoparticles. Author: Xie S, Yuan R, Chai Y, Bai L, Yuan Y, Wang Y. Journal: Talanta; 2012 Aug 30; 98():7-13. PubMed ID: 22939121. Abstract: In the present study, toluidine blue-graphene (Tb-Gra) nanocomposites were prepared to design a Lable-free electrochemical aptasensor for highly sensitive detection of thrombin based on layer-by-layer (LBL) technology. The nanocomposites with excellent redox electrochemical activities were first immobilized on the gold nanoparticles (nano-Au) modified glassy carbon electrodes (GCE). Then, the LBL structure was performed by electrostatic adsorption between the positively charged Tb-Gra and negatively charged nano-Au, which formed {Tb-Gra/nano-Au}(n) multilayer films for electroactive species enrichment and biomolecule immobilization. Subsequently, the thiolated thrombin binding aptamer (TBA) was assembled on the nano-Au surface through Au-S bond. In the presence of target thrombin (TB), the TBA on the multilayer could catch the thrombin onto the electrode surface, which resulted in a barrier for electro-transfer, leading to the decrease of the electrochemical signal of Tb-Gra nanocomposites. Under the optimal conditions, a wide detection range from 0.001 nM to 80 nM and a low detection limit of 0.33 pM (defined as S/N=3) for thrombin were obtained. In addition, the sensor exhibited excellent selectivity against other proteins.[Abstract] [Full Text] [Related] [New Search]