These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Trend analysis and prediction of cancer incidence in China]. Author: Chen WQ, Zheng RS, Zeng HM, Zhang SW, Li N, Zou XN, He J. Journal: Zhonghua Yu Fang Yi Xue Za Zhi; 2012 Jul; 46(7):581-6. PubMed ID: 22943910. Abstract: OBJECTIVE: Based on the national cancer incidence database from 1998 to 2007, to analyze the cancer incidence trend and predict the cancer burden between 2008 and 2015. METHODS: We picked up the cancer incidence data of 40 cancer registry sites from National Central Cancer Registry Database between 1998 and 2007. In total, 1 109 594 cancer cases were registered, covering 446 734 668 person-year. The separate incidence by district and gender were calculated, and the standardized incidence rate was calculated by world's population age structure. The incidence trend between the 10 years was analyzed by JoinPoint software, as well as the age-percentage-changes (APC). Age-Period-Cohort Bayesian Model was applied to fit the cancer incidence data stratified by age, district and gender. The cancer incidence between 2008 and 2015 was then predicted. RESULTS: During the period of 1998 - 2007, in urban areas, the male cancer incidence rate was 277.61/100 000 (472 307/170 131 309), with the age standardized rate (ASR) at 202.05/100 000; while the female cancer incidence rate was 236.35/100 000 (389 586/164 830 893), with the ASR at 159.15/100 000; in rural areas, the male and female cancer incidence rates were separately 272.23/100 000 (153 478/56 377 236) and 170.09/100 000 (94 223/55 395 230), with the corresponding ASR at 244.34/100 000 and 137.90/100 000. Crude incidence rate in urban men increased from 247.00/100 000 (27 758/11 237 967) in 1998 to 305.76/100 000 (68 953/22 551 353) in 2007; while it increased from 207.37/100 000 (22 476/10 838 355) to 263.20/100 000 (58 055/22 057 787) among urban women. The crude incidence rate in rural men increased from 232.33/100 000 (10 045/4 323 628) to 303.65/100 000 (23 313/7 677 484) and it increased from 139.03/100 000 (5836/4 197 806) to 197.40/100 000 (14 850/7 522 690) among rural women. After age adjustment, the urban male APC value (95%CI) was 0.5% (-0.2% - 1.3%), showed no significantly statistical difference. However, the urban female APC value (95%CI), rural male APC value (95%CI) and rural female APC value (95%CI) were separately 1.7% (1.3% - 2.0%), 1.8% (0.9% - 2.6%) and 2.8% (1.8% - 3.7%), all showed an obvious uptrend. The outcome of Age-Period-Cohort Bayesian model predicted that by year 2015, the incidence cancer rate in urban areas will reach 309.13/100 000 (1.140 million new cases) among males and 303.79/100 000 (1.046 million new cases) among females; while in rural areas the rate will reach 288.66/100 000 (1.019 million new cases) among males and 222.59/100 000 (0.734 million new cases) among females. CONCLUSION: The cancer incidence has increased annually; the uptrend in rural areas was more obvious than it in urban areas; the uptrend in females was more obvious than it in males. It is predicted that the annual incidence will continue to increase in the next years, and effective control programs should be carried out immediately.[Abstract] [Full Text] [Related] [New Search]