These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glycoengineering the N-acyl side chain of sialic acid of human erythropoietin affects its resistance to sialidase. Author: Werner A, Horstkorte R, Glanz D, Biskup K, Blanchard V, Berger M, Bork K. Journal: Biol Chem; 2012 Aug; 393(8):777-83. PubMed ID: 22944680. Abstract: During the last years, the use of therapeutic glycoproteins has increased strikingly. Glycosylation of recombinant glycoproteins is of major importance in biotechnology, as the glycan composition of recombinant glycoproteins impacts their pharmacological properties. The terminal position of N-linked complex glycans in mammals is typically occupied by sialic acid. The presence of sialic acid is crucial for functionality and affects the half-life of glycoproteins. However, glycoproteins in the bloodstream become desialylated over time and are recognized by the asialoglycoprotein receptors via the exposed galactose and targeted for degradation. Non-natural sialic acid precursors can be used to engineer the glycosylation side chains by biochemically introducing new non-natural terminal sialic acids. Previously, we demonstrated that the physiological precursor of sialic acid (i.e., N-acetylmannosamine) can be substituted by the non-natural precursors N-propanoylmannosamine (ManNProp) or N-pentanoylmannosamine (ManNPent) by their simple application to the cell culture medium. Here, we analyzed the glycosylation of erythropoietin (EPO). By feeding cells with ManNProp or ManNPent, we were able to incorporate N-propanoyl or N-pentanoyl sialic acid in significant amounts into EPO. Using a degradation assay with sialidase, we observed a higher resistance of EPO to sialidase after incorporation of N-propanoyl or N-pentanoyl sialic acid.[Abstract] [Full Text] [Related] [New Search]