These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Controlling the localization of polymer-functionalized nanoparticles in mixed lipid/polymer membranes. Author: Olubummo A, Schulz M, Lechner BD, Scholtysek P, Bacia K, Blume A, Kressler J, Binder WH. Journal: ACS Nano; 2012 Oct 23; 6(10):8713-27. PubMed ID: 22950802. Abstract: Surface hydrophobicity plays a significant role in controlling the interactions between nanoparticles and lipid membranes. In principle, a nanoparticle can be encapsulated into a liposome, either being incorporated into the hydrophobic bilayer interior or trapped within the aqueous vesicle core. In this paper, we demonstrate the preparation and characterization of polymer-functionalized CdSe NPs, tuning their interaction with mixed lipid/polymer membranes from 1,2-dipalmitoyl-sn-glycero-3-phophocholine and PIB(87)-b-PEO(17) block copolymer by varying their surface hydrophobicity. It is observed that hydrophobic PIB-modified CdSe NPs can be selectively located within polymer domains in a mixed lipid/polymer monolayer at the air/water interface, changing their typical domain morphologies, while amphiphilic PIB-PEO-modified CdSe NPs showed no specific localization in phase-separated lipid/polymer films. In addition, hydrophilic water-soluble CdSe NPs can readily adsorb onto spread monolayers, showing a larger effect on the molecule packing at the air/water interface in the case of pure lipid films compared to mixed monolayers. Furthermore, the incorporation of PIB-modified CdSe NPs into hybrid lipid/polymer GUVs is demonstrated with respect to the prevailing phase state of the hybrid membrane. Monitoring fluorescent-labeled PIB-CdSe NPs embedded into phase-separated vesicles, it is demonstrated that they are enriched in one specific phase, thus probing their selective incorporation into the hydrophobic portion of PIB(87)-b-PEO(17) BCP-rich domains. Thus, the formation of biocompatible hybrid GUVs with selectively incorporated nanoparticles opens a new perspective for subtle engineering of membranes together with their (nano-) phase structure serving as a model system in designing functional nanomaterials for effective nanomedicine or drug delivery.[Abstract] [Full Text] [Related] [New Search]