These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Flexible CoAl LDH@PEDOT core/shell nanoplatelet array for high-performance energy storage. Author: Han J, Dou Y, Zhao J, Wei M, Evans DG, Duan X. Journal: Small; 2013 Jan 14; 9(1):98-106. PubMed ID: 22961997. Abstract: A CoAl-layered double hydroxide (LDH)@poly(3,4-ethylenedioxythiophene) (PEDOT) core/shell nanoplatelet array (NPA) is grown on a flexible Ni foil substrate as a high-performance pseudocapacitor. The LDH@PEDOT core/shell NPA shows a maximum specific capacitance of 649 F/g (based on the total mass) by cyclic voltammetry (scan rate: 2 mV/s) and 672 F/g by galvanostatic discharge (current density: 1 A/g). Furthermore, the hybrid NPA electrode also exhibits excellent rate capability with a specific energy of 39.4 Wh/kg at a current density of 40 A/g, as well as good long-term cycling stability (92.5% of its original capacitance is retained after 5000 cycles). These performances are superior to those of conventional supercapacitors and LDH NPA without the PEDOT coating. The largely enhanced pseudocapacitor behavior of the LDH@PEDOT NPA electrode is related to the synergistic effect of its individual components: the LDH nanoplatelet core provides abundant energy-storage capacity, while the highly conductive PEDOT shell and porous architecture facilitate the electron/mass transport in the redox reaction.[Abstract] [Full Text] [Related] [New Search]