These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structure and mechanical properties of human trichocyte keratin intermediate filament protein.
    Author: Chou CC, Buehler MJ.
    Journal: Biomacromolecules; 2012 Nov 12; 13(11):3522-32. PubMed ID: 22963508.
    Abstract:
    Keratin is a protein in the intermediate filament family and the key component of hair, nail, and skin. Here we report a bottom-up atomistic model of the keratin dimer, using the complete human keratin type k35 and k85 amino acid sequence. A detailed analysis of geometric and mechanical properties through full-atomistic simulation with validation against experimental results is presented. We introduce disulfide cross-links in a keratin tetramer and compare the mechanical behavior of the disulfide bonded systems with a system without disulfide bonds. Disulfide bond results in a higher strength (20% increase) and toughness (49% increase), but the system loses α-helical structures under loading, suggesting that disulfide bonds play a significant role in achieving the characteristic mechanical properties of trichocyte α-keratin. Our study provides general insight into the effect of disulfide cross-link on mechanical properties. Moreover, the availability of an atomistic model of this protein opens the possibility to study the mechanical properties of hair fibrils and other fibers from a bottom-up perspective.
    [Abstract] [Full Text] [Related] [New Search]