These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparative enantioseparation of talinolol in aqueous and non-aqueous capillary electrophoresis and study of related selector-selectand interactions by nuclear magnetic resonance spectroscopy.
    Author: Chankvetadze L, Servais AC, Fillet M, Salgado A, Crommen J, Chankvetadze B.
    Journal: J Chromatogr A; 2012 Dec 07; 1267():206-16. PubMed ID: 22964050.
    Abstract:
    The enantiomers of the chiral β-blocker drug talinolol were separated with two single component sulfated β-cyclodextrin (CD) derivatives, namely heptakis (2,3-di-O-methyl-6-sulfo)-β-CD) (HDMS-β-CD) and heptakis (2,3-di-O-acetyl-6-sulfo)-β-CD) (HDAS-β-CD), in aqueous and non-aqueous capillary electrophoresis (CE). The enantiomer affinity pattern of talinolol toward these two CDs was opposite in both aqueous and non-aqueous CE. However, the enantiomer affinity pattern for a given CD derivative did not change when aqueous buffer was replaced with non-aqueous background electrolyte. The structures of the analyte-selector complexes in both, aqueous and non-aqueous electrolytes were studied using rotating frame nuclear Overhauser effect (ROESY) NMR spectroscopy. Inclusion complex formation between the enantiomers of talinolol and HDAS-β-CD was confirmed in aqueous buffer, while the complex between the enantiomers of talinolol and HDMS-β-CD was of the external type. The complex of the talinolol enantiomers with HDAS-β-CD in non-aqueous electrolyte was also of the external type. In spite of external complex formation excellent separation of the enantiomers was observed in non-aqueous CE.
    [Abstract] [Full Text] [Related] [New Search]