These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Insulin-like and testis ecdysiotropin neuropeptides are regulated by the circadian timing system in the brain during larval-adult development in the insect Rhodnius prolixus (Hemiptera). Author: Vafopoulou X, Steel CG. Journal: Gen Comp Endocrinol; 2012 Nov 01; 179(2):277-88. PubMed ID: 22964530. Abstract: Insulin-like peptides (ILPs) regulate numerous functions in insects including growth, development, carbohydrate metabolism and female reproduction. This paper reports the immunohistochemical localization of ILPs in brain neurons of Rhodnius prolixus and their intimate associations with the brain circadian clock system. In larvae, three groups of neurons in the protocerebrum are ILP-positive, and testis ecdysiotropin (TE) is co-localized in two of them. During adult development, the number of ILP groups increased to four. A blood meal initiates transport and release of ILPs, indicating that release is nutrient dependent. Both production and axonal transport of ILPs continue during adult development with clear cytological evidence of a daily rhythm that closely correlates with the daily rhythm of ILPs release from brains in vitro. The same phenomena were observed with TE previously. Double labeling for ILPs and pigment dispersing factor (PDF) (contained in the brain lateral clock cells, LNs) revealed intimate associations between axons of the ILP/TE cells and PDF-positive axons in both central brain and retrocerebral complex, revealing potential neuronal pathways for circadian regulation of ILPs and TE. Similar close associations were found previously between LN axons and axons of the brain neurons producing the neuropeptide prothoracicotropic hormone. Thus, the brain clock system controls rhythmicity in multiple brain neurohormones. It is suggested that rhythms in circulating ILPs and TE act in concert with known rhythms of circulating ecdysteroids in both larvae and adults to orchestrate the timing of cellular responses in diverse tissues of the animal, thereby generating internal temporal order within it.[Abstract] [Full Text] [Related] [New Search]