These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of alkyl chain length, solvent and tandem Claisen rearrangement on two-dimensional structures of noncyclic isobutenyl compounds: scanning tunnelling microscopic study. Author: Kikkawa Y, Omori K, Takahashi M, Kanesato M, Hiratani K. Journal: Org Biomol Chem; 2012 Oct 28; 10(40):8087-94. PubMed ID: 22965495. Abstract: A series of isobutenyl compounds possessing various alkyl chain lengths (C(n)-1) with a carbon number of n = 14-21 were synthesized and their two-dimensional (2D) structures were systematically studied using scanning tunnelling microscopy (STM) at a highly oriented pyrolytic graphite (HOPG)/solvent interface. Two kinds of solvent, such as 1-phenyloctane (PO) and 1-phenylnonane (PN), were selected to examine the 2D structures by changing the alkyl chain length of the isobutenyl compounds. At the HOPG/PO interface, C(n)-1 molecules with shorter alkyl chains (n = 14-17) showed the same zig-zag shaped 2D structure regardless of the alkyl chain length, whereas an odd-even effect was recognized in C(n)-1 compounds with longer alkyl chains (n = 18-21) displaying the wavy and tripod structures, alternately. This odd-even effect was also observed at the HOPG/PN interface rather more distinctly. These results suggest that there is a specific alkyl chain length range that shows the odd-even effect in the present 2D system. After a tandem Claisen rearrangement (TCR), the 2D structures of all the C(n)-2 compounds formed were converged into the same linear structure, i.e. the odd-even effect was cancelled by the conformational limitation induced by the TCR.[Abstract] [Full Text] [Related] [New Search]