These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Overexpression of hydroperoxide lyase, peroxygenase and epoxide hydrolase in tobacco for the biotechnological production of flavours and polymer precursors.
    Author: Huang FC, Schwab W.
    Journal: Plant Biotechnol J; 2012 Dec; 10(9):1099-109. PubMed ID: 22967031.
    Abstract:
    Plants produce short-chain aldehydes and hydroxy fatty acids, which are important industrial materials, through the lipoxygenase pathway. Based on the information that lipoxygenase activity is up-regulated in tobacco leaves upon infection with tobacco mosaic virus (TMV), we introduced a melon hydroperoxide lyase (CmHPL) gene, a tomato peroxygenase (SlPXG) gene and a potato epoxide hydrolase (StEH) into tobacco leaves using a TMV-based viral vector system to afford aldehyde and hydroxy fatty acid production. Ten days after infiltration, tobacco leaves infiltrated with CmHPL displayed high enzyme activities of 9-LOX and 9-HPL, which could efficiently transform linoleic acid into C(9) aldehydes. Protein extracts prepared from 1 g of CmHPL-infiltrated tobacco leaves (fresh weight) in combination with protein extracts prepared from 1 g of control vector-infiltrated tobacco leaves (as an additional 9-LOX source) produced 758 ± 75 μg total C(9) aldehydes in 30 min. The yield of C(9) aldehydes from linoleic acid was 60%. Besides, leaves infiltrated with SlPXG and StEH showed considerable enzyme activities of 9-LOX/PXG and 9-LOX/EH, respectively, enabling the production of 9,12,13-trihydroxy-10(E)-octadecenoic acid from linoleic acid. Protein extracts prepared from 1 g of SlPXG-infiltrated tobacco leaves (fresh weight) in combination with protein extracts prepared from 1 g of StEH-infiltrated tobacco leaves produced 1738 ± 27 μg total 9,12,13-trihydroxy-10(E)-octadecenoic acid isomers in 30 min. The yield of trihydroxyoctadecenoic acids from linoleic acid was 58%. C(9) aldehydes and trihydroxy fatty acids could likely be produced on a larger scale using this expression system with many advantages including easy handling, time-saving and low production cost.
    [Abstract] [Full Text] [Related] [New Search]