These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The practicality of nanoceria-PAN-based (68)Ge/(68)Ga generator toward preparation of (68)Ga-labeled cyclic RGD dimer as a potential PET radiotracer for tumor imaging. Author: Chakraborty S, Chakravarty R, Sarma HD, Dash A, Pillai MR. Journal: Cancer Biother Radiopharm; 2013 Feb; 28(1):77-83. PubMed ID: 22967229. Abstract: Cyclic RGD (Arg-Gly-Asp) peptides radiolabeled with (68)Ga have great potential for the early tumor detection and noninvasive monitoring of tumor metastasis and therapeutic response. Herein, the preparation of (68)Ga-labeled DOTA-E[c(RGDfK)](2) (DOTA=1,4,7,10-tetraazacylododecane-1,4,7,10-tetracetic acid; E=Glutamic acid; R=Arginine; G=Glycine; D=Aspartic acid; f=phenyl alanine; K=lysine) using (68)Ga directly eluted from a nanoceria-polyacrylonitrile (CeO(2)-PAN)-based (68)Ge/(68)Ga generator developed in-house was reported. The (68)Ga complex of DOTA-E[c(RGDfK)](2) was synthesized with >98% radiochemical purity by incubating 20 μg of the conjugate with (68)GaCl(3) (74-111 MBq) in acetate buffer (pH 3.5-4.0) at 90°C for 10 minutes. The complex exhibited excellent in vitro stability in 0.1 M EDTA solution at room temperature upto 1 hour studied (radiochemical purity: 98.0%). The biological efficacy of the radiolabeled conjugate was studied in C57/BL6 mice bearing melanoma tumors. The results of the biodistribution studies revealed significant tumor uptake (4.14±0.54%ID/g) within 10 minutes postinjection (p.i.), which increased further to 4.61±0.31%ID/g at 30 minutes p.i. The tumor-to-blood ratio was found to increase from 1.75±0.42 at 10 minutes p.i. to 2.25±0.20 at 60 minutes p.i., whereas the tumor-to-liver and tumor-to-muscle ratio between the same time points increased from 2.71±0.76 to 3.31±0.84 and 5.37±1.08 to 8.97±1.32, respectively. The study successfully demonstrated the preparation of (68)Ga-DOTA-E[c(RGDfK)](2) as a potential positron-emission tomography radiotracer for possible use in tumor imaging by using (68)Ga eluted from a reliable, easy-to-handle (68)Ge/(68)Ga generator developed in-house, without any postelution purification of (68)Ga.[Abstract] [Full Text] [Related] [New Search]