These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Opposite chirality of α-carotene in unusual cyanobacteria with unique chlorophylls, Acaryochloris and Prochlorococcus.
    Author: Takaichi S, Mochimaru M, Uchida H, Murakami A, Hirose E, Maoka T, Tsuchiya T, Mimuro M.
    Journal: Plant Cell Physiol; 2012 Nov; 53(11):1881-8. PubMed ID: 22968452.
    Abstract:
    Among all photosynthetic and non-photosynthetic prokaryotes, only cyanobacterial species belonging to the genera Acaryochloris and Prochlorococcus have been reported to synthesize α-carotene. We reviewed the carotenoids, including their chirality, in unusual cyanobacteria containing diverse Chls. Predominantly Chl d-containing Acaryochloris (two strains) and divinyl-Chl a and divinyl-Chl b-containing Prochlorococcus (three strains) contained β-carotene and zeaxanthin as well as α-carotene, whereas Chl b-containing Prochlorothrix (one strain) and Prochloron (three isolates) contained only β-carotene and zeaxanthin but no α-carotene as in other cyanobacteria. Thus, the capability to synthesize α-carotene seemed to have been acquired only by Acaryochloris and Prochlorococcus. In addition, we unexpectedly found that α-carotene in both cyanobacteria had the opposite chirality at C-6': (6'S)-chirality in Acaryochloris and normal (6'R)-chirality in Prochlorococcus, as reported in some green algae and land plants. The results represent the first evidence for the natural occurrence and biosynthesis of (6'S)-α-carotene. All the zeaxanthins in these species were of the usual (3R,3'R)-chirality. Therefore, based on the identification of the carotenoids and genome sequence data, we propose a biosynthetic pathway for the carotenoids, particularly α-carotene, including the participating genes and enzymes.
    [Abstract] [Full Text] [Related] [New Search]