These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Low-frequency ultrasound-induced transport across non-raft-forming ternary lipid bilayers. Author: Small EF, Dan NR, Wrenn SP. Journal: Langmuir; 2012 Oct 09; 28(40):14364-72. PubMed ID: 22974532. Abstract: We examined the effect of bilayer composition on membrane sensitivity to low-frequency ultrasound (LFUS) in bilayers composed of ternary mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), dipalmitoyl-phosphocholine (DPPC), and cholesterol. The phase diagram of this system does not display macroscopic phase coexistence between liquid phases (although there are suggestions that there is coexistence between a liquid and a solid phase). Samples from across the composition space were exposed to 20 kHz, continuous wave ultrasound, and the response of the bilayer was quantified using steady-state fluorescence spectroscopy to measure the release of a self-quenching dye, calcein, from large unilamellar vesicles. Dynamic light scattering measurements indicate that, in this system, release proceeds primarily by transport through the vesicle bilayer. While vesicle destruction might account, at least in part, for the light scattering trends observed, evidence of destruction was not as obvious as in other lipid systems. Values for bilayer permeability are obtained by fitting release kinetics to a two-film theory mathematical model. The permeability due to LFUS is found to increase with increasing DPPC content, as the bilayer tends toward the solid-ordered phase. Permeability, and thus sensitivity to LFUS, decreases with either POPC or cholesterol mole fractions. In the liquid regime of this system, there is no recorded phase transition; thus cholesterol is the determining factor in release rates. However, the presence of domain boundaries between distinctly differing phases of liquid and solid is found to cause release rates to more than double. The correlation of permeability with phase behavior might prove useful in designing and developing therapies based on ultrasound and membrane interactions.[Abstract] [Full Text] [Related] [New Search]