These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Prevention of traumatic brain injury-induced neuronal death by inhibition of NADPH oxidase activation. Author: Choi BY, Jang BG, Kim JH, Lee BE, Sohn M, Song HK, Suh SW. Journal: Brain Res; 2012 Oct 24; 1481():49-58. PubMed ID: 22975130. Abstract: The present study aimed to evaluate the therapeutic potential of apocynin, an NADPH oxidase assembly inhibitor, on traumatic brain injury. Rat traumatic brain injury (TBI) was performed using a weight drop model. Apocynin (100mg/kg) was injected into the intraperitoneal space 15 min before TBI. Reactive oxygen species (ROS) in the hippocampal CA3 pyramidal neurons were detected by dihydroethidium (dHEt) at 3h after TBI. Oxidative injury was detected by 4-hydroxy-2-nonenal (4HNE) at 6h after TBI. Blood-brain barrier disruption was detected by IgG extravasation and neuronal death was evaluated with Fluoro Jade-B staining 24h after TBI. Microglia activation was detected by CD11b immunohistochemistry in the hippocampus at 1 week after TBI. ROS production was inhibited by apocynin administration in the hippocampal CA3 pyramidal neurons. This pre-treatment with apocynin decreased the blood-brain barrier disruption, the number of degenerating neurons in the hippocampal CA3 region and microglial activation after TBI. The present study indicates that apocynin pre-treatment prevents TBI-induced ROS production, thus decreasing BBB disruption, neuronal death and microglial activation. Therefore, the present study suggests that inhibition of NADPH oxidase by apocynin may have a high therapeutic potential to reduce traumatic brain injury-induced neuronal death.[Abstract] [Full Text] [Related] [New Search]