These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Slice-selective broadband refocusing pulses for the robust generation of crushed spin-echoes.
    Author: Janich MA, McLean MA, Noeske R, Glaser SJ, Schulte RF.
    Journal: J Magn Reson; 2012 Oct; 223():129-37. PubMed ID: 22975241.
    Abstract:
    A major challenge for in vivo magnetic resonance spectroscopy with point-resolved spectroscopy (PRESS) is the low signal intensity for the measurement of weakly scalar coupled spins, for example lactate. The chemical-shift displacement error between the two coupling partners of the lactate molecule leads to a signal decrease. The chemical-shift displacement error is decreased and therefore the lactate signal is increased by using refocusing pulses with a broad bandwidth. Previously, slice-selective broadband universal rotation pulses (S-BURBOP) were designed and applied as refocusing pulses in the PRESS pulse sequence (Janich MA, et al., Journal of Magnetic Resonance, 2011, 213, 126-135). However, S-BURBOP pulses leave a phase error across the slice which is superimposed on the spectra when spatially resolving the PRESS voxel. In the present novel design of slice-selective broadband refocusing pulses (S-BREBOP) this phase error is avoided. S-BREBOP pulses obtain 2.5 times the bandwidth of conventional Shinnar-Le Roux pulses and are robust against ±20% miscalibration of the B(1) amplitude. S-BREBOP pulses were validated in phantoms and in a low-grade brain tumor of a patient. Compared to conventional Shinnar-Le Roux pulses they lead to a decrease of the chemical-shift displacement error and consequently a lactate signal increase.
    [Abstract] [Full Text] [Related] [New Search]