These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ultrasensitive electrochemical strategy for trace detection of APE-1 via triple signal amplification strategy.
    Author: Han J, Zhuo Y, Chai Y, Xiang Y, Yuan R, Yuan Y, Liao N.
    Journal: Biosens Bioelectron; 2013 Mar 15; 41():116-22. PubMed ID: 22981009.
    Abstract:
    A novel ultrasensitive electrochemical immunoassay for the determination of apurinic/apyrimidinic endonuclease (APE-1) using a three-step signal amplification process was reported in this work. The first-step signal amplification process was based on the labeled biotinylated alkaline phosphatase (bio-AP) on the nickel hexacyanoferrates nanoparticle-decorated Au nanochains (Ni-AuNCs) toward the biocatalysis of ascorbic acid 2-phosphate (AA-P) to in-situ produce ascorbic acid (AA). Then the signal was further amplified by electrochemical oxidation of the in-situ-produced AA because of the catalysis of Ni-AuNCs. Finally, with the nanochain-modified streptavidin (SA), the stoichiometry of bio-AP could be increased through the specific and high affinity interaction of streptavidin-biotin. On the other hand, a kind of organic material (PTC-NH(2)), owing the amino-functionalized interface and unique electrochemical properties, as matrix for primary antibodies (Ab(1)) immobilization could lower the background current signal and enhance the amount of immobilized Ab(1). With a sandwich-type immunoreaction, the triple signal amplification greatly enhanced the sensitivity for the detection of APE-1. Under optimal conditions, the electrochemical immunosensor exhibited a linear range of 0.01-100 pg/mL with an extremely low detection limit of 3.9 fg/mL (signal/noise=3).
    [Abstract] [Full Text] [Related] [New Search]