These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phosphorus fluxes at the sediment-water interface in subtropical wetlands subjected to experimental warming: a microcosm study.
    Author: Wang H, Holden J, Spera K, Xu X, Wang Z, Luan J, Xu X, Zhang Z.
    Journal: Chemosphere; 2013 Feb; 90(6):1794-804. PubMed ID: 22999304.
    Abstract:
    Global warming is increasingly challenging for wetland ecological function. A temperature controlled microcosm system was developed to simulate climate change scenarios of an ambient temperature (control) and an elevated temperature (+5 °C). The effects and associated mechanisms of warming on phosphorus (P) fluxes at the sediment-water interface of six subtropical wetlands were investigated. The results indicated that P fluxes were generally enhanced under the experimental warming as measured by higher P concentrations in the porewater and overlying water as well as higher benthic P fluxes. The release of P from sediment to porewater occurred more strongly and quickly in response to experimental warming compared to the subsequent upward transfer into overlying water. The average accumulative benthic P output from the tested wetlands under the experimental warming was greater by 12.9 μg cm(-2) y(-1) (28%) for total P and 8.26 μg cm(-2) y(-1) (25%) for dissolved reactive P, compared to the ambient scenarios. Under warming the redistribution of P fractions in sediments occurred with greater NH(4)Cl-P and lower BD-P (extracted by a bicarbonate buffered dithionite solution) accompanied by greater NaOH-P. The higher temperature enhanced total phospholipid fatty acids. A shift in the microbial community was also observed with a relative dominance of fungi (a 4.7% increase) and a relative decline (by 18%) in bacterial abundance, leading to the higher secretion of phosphatase. Comparing between wetlands, the potential P fluxes in the nutrient-enriched wetlands were less impacted by warming than the other wetland types investigated. Thus wetlands characterized by low or medium concentrations of P in sediments were more susceptible to warming compared to P-rich wetlands.
    [Abstract] [Full Text] [Related] [New Search]