These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Tetrahedratic mesophases, chiral order, and helical domains induced by quadrupolar and octupolar interactions. Author: Trojanowski K, Pająk G, Longa L, Wydro T. Journal: Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011704. PubMed ID: 23005434. Abstract: We present an exhaustive account of phases and phase transitions that can be stabilized in the recently introduced generalized Lebwohl-Lasher model with quadrupolar and octupolar microscopic interactions [L. Longa, G. Pająk, and T. Wydro, Phys. Rev. E 79, 040701(R) (2009)]. A complete mean-field analysis of the model, along with Monte Carlo simulations allows us to identify four distinct classes of the phase diagrams with a number of multicritical points where, in addition to the standard uniaxial and biaxial nematic phases, the other nematic like phases are stabilized. These involve, among the others, tetrahedratic (T), nematic tetrahedratic (N(T)), and chiral nematic tetrahedratic (N(T)(*)) phases of global T(d), D(2d), and D(2) symmetry, respectively. Molecular order parameters and correlation functions in these phases are determined. We conclude with generalizations of the model that give a simple molecular interpretation of macroscopic regions with opposite optical activity (ambidextrous chirality), observed, e.g., in bent-core systems. An estimate of the helical pitch in the N(T)(*) phase is also given.[Abstract] [Full Text] [Related] [New Search]