These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Microscale boundary conditions of the lattice Boltzmann equation method for simulating microtube flows.
    Author: Zheng L, Guo Z, Shi B.
    Journal: Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016712. PubMed ID: 23005568.
    Abstract:
    The lattice Boltzmann equation (LBE) method has been shown to be a promising tool for microscale gas flows. However, few works focus on the microtube flows, and there still are some fundamental problems for the LBE to such flows. In this paper, a recently proposed axisymmetric LBE with three kinetic boundary conditions, i.e., the combination of bounceback and specular reflection scheme, the combination of the Maxwell and specular-reflection scheme, and the combination of the Maxwell and bounceback scheme, have been investigated in detail. By analyzing the micro-Hagen-Poiseuille flow, we observed the discrete boundary condition effect and provided a revised boundary scheme to overcome such effect near the slip flow regime. Some numerical tests for the micro-Hagen-Poiseuille have been carried out to validate the analysis, and the numerical results of the revised boundary schemes agree well with the analytic solutions which confirmed our theoretical analysis. In addition, we also applied the revised combination of the Maxwell and bounceback scheme to microtube flow with sudden expansion and contraction, the numerical results of the pressure distribution and normalized slip velocity agree well with the theoretical ones.
    [Abstract] [Full Text] [Related] [New Search]