These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Negligible environmental sensitivity of graphene in a hexagonal boron nitride/graphene/h-BN sandwich structure. Author: Wang L, Chen Z, Dean CR, Taniguchi T, Watanabe K, Brus LE, Hone J. Journal: ACS Nano; 2012 Oct 23; 6(10):9314-9. PubMed ID: 23009029. Abstract: Using Raman spectroscopy, we study the environmental sensitivity of mechanically exfoliated and electrically floating single-layer graphene transferred onto a hexagonal boron nitride (h-BN) substrate, in comparison with graphene deposited on a SiO(2) substrate. In order to understand and isolate the substrate effect on graphene electrical properties, we model and correct for Raman optical interference in the substrates. As-deposited and unannealed graphene shows a large I(2D)/I(G) ratio on both substrates, indicating extremely high quality, close to that of graphene suspended in vacuum. Thermal annealing strongly activates subsequent environmental sensitivity on the SiO(2) substrate; such activation is reduced but not eliminated on the h-BN substrate. In contrast, in a h-BN/graphene/h-BN sandwich structure, with graphene protected on both sides, graphene remains pristine despite thermal processing. Raman data provide a deeper understanding of the previously observed improved graphene electrical conductivity on h-BN substrates. In the sandwich structure, the graphene 2D Raman feature has a higher frequency and narrower line width than in pristine suspended graphene, implying that the local h-BN environment modestly yet measurably changes graphene electron and phonon dispersions.[Abstract] [Full Text] [Related] [New Search]