These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Downregulation of miR-101 in gastric cancer correlates with cyclooxygenase-2 overexpression and tumor growth. Author: He XP, Shao Y, Li XL, Xu W, Chen GS, Sun HH, Xu HC, Xu X, Tang D, Zheng XF, Xue YP, Huang GC, Sun WH. Journal: FEBS J; 2012 Nov; 279(22):4201-12. PubMed ID: 23013439. Abstract: Cyclooxygenase-2 (COX-2) plays an important role in the carcinogenesis and progression of gastric cancer. It has been demonstrated that COX-2 overexpression depends on different cellular pathways, involving both transcriptional and post-transcriptional regulation. MicroRNAs (miRNAs) are small, noncoding RNAs that function as post-transcriptional regulators. Here, we characterize miR-101 expression and its role in the regulation of COX-2 expression, which in turn, will provide us with additional insights into the potential therapeutic benefits of exogenous miR-101 for treatment of gastric cancer. Our results showed that miR-101 levels in gastric cancer tissues were significantly lower than those in the matched normal tissue (P < 0.01). Furthermore, lower levels of miR-101 were associated with increased tumor invasion and lymph node metastasis (P < 0.05). We also found an inverse correlation between miR-101 and COX-2 expression in both gastric cancer specimens and cell lines. Significant decreases in COX-2 mRNA and COX-2 levels were observed in the pre-miR-101-infected gastric cancer cells. One possible mechanism of interaction is that miR-101 inhibited COX-2 expression by directly binding to the 3'-UTR of COX-2 mRNA. Overexpression of miR-101 in gastric cancer cell lines also inhibited cell proliferation and induced apoptosis in vitro, as well as inhibiting tumor growth in vivo. These results collectively indicate that miR-101 may function as a tumor suppressor in gastric cancer, with COX-2 as a direct target.[Abstract] [Full Text] [Related] [New Search]