These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Graphene oxide-hairpin probe nanocomposite as a homogeneous assay platform for DNA base excision repair screening. Author: Zhou DM, Xi Q, Liang MF, Chen CH, Tang LJ, Jiang JH. Journal: Biosens Bioelectron; 2013 Mar 15; 41():359-65. PubMed ID: 23017681. Abstract: Uracil-DNA glycosylase (UDG) as one of the most important base excision repair enzymes plays a crucial role in protecting the genome from endogenous DNA damage and sustaining the genome integrity. Quantitative activity analysis of UDG is a central challenge and of fundamental importance in bioanalysis. Here, we proposed a novel biosensor constituted by adsorbing a fluorophore-labeled hairpin probe onto the surface of graphene oxide (GO) as a homogeneous assay platform for sensitive UDG activity assay. Active UDG could excise the uracil base in the hairpin probe, and further hydrolysis of the leaving abasic site gave rise to high fluorescence. Thus, it provided a convenient approach for UDG activity quantification. Because of the unique ability of GO in universal fluorescence quenching, a low background fluorescence signal can be obtained for the efficient fluorescence resonant energy transfer from the fluorophore-labeled on the hairpin probe to GO sheet. A quite wide dynamic range from 0.0017 U/mL to 0.8 U/mL was achieved for UDG assay and the detection limit was estimated to be 0.0008 U/mL. The results indicated that this strategy offers a simple, cost-effective, highly sensitive and selective homogeneous detection platform for UDG activity assay related biochemical studies.[Abstract] [Full Text] [Related] [New Search]