These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of Fructose and glucose on glycation of β-lactoglobulin in an intermediate-moisture food model system: analysis by liquid chromatography-mass spectrometry (LC-MS) and data-independent acquisition LC-MS (LC-MS(E)).
    Author: Chen YJ, Liang L, Liu XM, Labuza TP, Zhou P.
    Journal: J Agric Food Chem; 2012 Oct 24; 60(42):10674-82. PubMed ID: 23020204.
    Abstract:
    To evaluate the effect of glucose and fructose on the glycation of β-lactoglobulin (β-Lg) in intermediate-moisture food (IMF), model systems consisting of β-Lg, glucose/fructose/sorbitol, glycerol, and water were established. All systems were stored at 25 and 35 °C for 2 months. The progress of the Maillard reaction and the mass change of β-Lg were investigated by the browning assay and gel electrophoresis, respectively. Meanwhile, liquid chromatography-mass spectrometry (LC-MS) and data-independent acquisition LC-MS (LC-MS(E)) were used to monitor the glycation extent and the glycated sites of β-Lg. The results indicated that glucose had a higher reaction activity of glycation than fructose, but both sugars had similar preference on the glycation site for β-Lg. The ranking order from high to low for the 9 detected glycated sites was L 1, K 91 > K 47 > K 70, K 77, K 83, K 100 > K 75 > K 135 for both sugars.
    [Abstract] [Full Text] [Related] [New Search]