These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Elevated cortisol inhibits adrenocorticotropic hormone- and serotonin-stimulated cortisol secretion from the interrenal cells of the Gulf toadfish (Opsanus beta).
    Author: Medeiros LR, McDonald MD.
    Journal: Gen Comp Endocrinol; 2012 Dec 01; 179(3):414-20. PubMed ID: 23022993.
    Abstract:
    Stimulation of the toadfish 5-HT(1A) receptor by serotonin (5-hydroxytryptamine; 5-HT) or 8-OH-DPAT, a 5-HT(1A) receptor agonist, results in a significant elevation in plasma cortisol. Conversely, chronic elevation of plasma cortisol has been shown to decrease brain 5-HT(1A) receptor mRNA and protein levels via the glucocorticoid receptor (GR); however, there appears to be a disconnect between brain levels of the receptor and cortisol release. We hypothesized that elevated plasma cortisol would inhibit both adrenocorticotropic hormone (ACTH)- and 5-HT-stimulated cortisol release from the interrenal cells of Gulf toadfish, that ACTH sensitivity would not be GR-mediated and 5-HT-stimulated cortisol release would not be via the 5-HT(1A) receptor. To test these hypotheses, interrenal cells from uncrowded, crowded, vehicle-, and cortisol-implanted toadfish were incubated with either ACTH, 5-HT or 5-HT receptor agonists, and cortisol secretion was measured. Incubation with ACTH or 5-HT resulted in a stimulation of cortisol secretion in uncrowded toadfish. Cortisol secretion in response to ACTH was not affected in crowded fish; however, interrenal cells from cortisol-implanted toadfish secreted significantly less cortisol than controls, a response that was not reversed upon treatment with the GR antagonist RU486. 5-HT-stimulated cortisol release was significantly lower from both crowded and cortisol-implanted toadfish interrenal cells compared to controls. Incubation with either a 5-HT(4) or a 5-HT(2) receptor agonist significantly stimulated cortisol secretion; however, incubation with 8-OH-DPAT did not, suggesting that the 5-HT(1A) receptor is not a mediator of cortisol release at the level of the interrenal cells. Combined, these results explain in part the disconnect between brain 5-HT(1A) levels and cortisol secretion.
    [Abstract] [Full Text] [Related] [New Search]