These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cholesterol determines and limits rHDL formation from human plasma apolipoprotein A-II and phospholipid membranes. Author: Bassett GR, Gillard BK, Pownall HJ. Journal: Biochemistry; 2012 Oct 30; 51(43):8627-35. PubMed ID: 23025327. Abstract: Apolipoprotein (apo) A-II, the second most abundant protein after apo A-I of human plasma high-density lipoproteins (HDL), is the most lipophilic of the exchangeable apolipoproteins. The rate of microsolubilization of dimyristoylphosphatidylcholine (DMPC) membranes by apo A-I to give rHDL increases as the level of membrane free cholesterol (FC) increases up to 20 mol % when the level of reaction decreases to nil. Given its greater lipophilicity, we tested the hypothesis that apo A-II and its reduced and carboxymethylated monomer (rcm apo A-II) would form rHDL at a membrane FC content of >20 mol %. According to turbidimetric titrations, the DMPC/apo A-II stoichiometry is 65/1 (moles to moles). At this stoichiometry, apo A-II forms rHDL from DMPC and FC. Contrary to our hypothesis, apo A-II, like apo A-I, reacts poorly with DMPC containing ≥20 mol % FC. The rate of formation of rHDL from rcm apo A-II and DMPC at all FC mole percentages is faster than that of apo A-II but nil at 20 mol % FC. In parallel reactions, monomeric and dimeric apo A-II form large FC-rich rHDL coexisting with smaller FC-poor rHDL; increasing the FC mole percentage increases the number and size of FC-rich rHDL. On the basis of the compositions of coexisting large and small rHDL, the free energy of transfer of FC from the smallest to the largest particle is approximately -1.2 kJ. On the basis of our data, we propose a model in which apo A-I and apo A-II bind to DMPC via surface defects that disappear at 20 mol % FC. These data suggest apo A-II-containing HDL formed intrahepatically are likely cholesterol-rich compared to the smaller intracellular lipid-poor apo A-I HDL.[Abstract] [Full Text] [Related] [New Search]