These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Construction, expression, and characterization of an anti-tumor immunotoxin containing the human anti-c-Met single-chain antibody and PE38KDEL.
    Author: Liu Z, Feng Z, Zhu X, Xu W, Zhu J, Zhang X, Fan Z, Ji G.
    Journal: Immunol Lett; 2013 Jan; 149(1-2):30-40. PubMed ID: 23026237.
    Abstract:
    Recombinant immunotoxins consisting of small antibody fragments fused to cytotoxic moieties are being evaluated for use in prospective antibody-targeted cancer therapies. A receptor tyrosine kinase known as c-Met is overexpressed in a vast range of human malignancies, making it an ideal target for antibody-mediated delivery of numerous cytotoxic agents. A single Fab molecule capable of binding to human c-Met with high affinity and specificity was previously identified using antibody phage-display technology. In order to develop a molecule to increase both the cytotoxicity and anti-tumor activity of the anti-c-Met molecule, a recombinant immunotoxin anti-c-Met/PE38KDEL was constructed and expressed by fusing the human anti-c-Met single-chain variable fragment (ScFv) with a modified Pseudomonas exotoxin A (PE38KDEL). Purified anti-c-Met/PE38KDEL was demonstrated to specifically bind to cells of c-Met-positive human hepatoma cell lines, causing a proliferation defect by inducing caspase-3/8-mediated apoptosis, as observed by in vitro assays. Furthermore, anti-c-Met/PE38KDEL administration was shown to inhibit the growth of hepatocellular carcinoma xenografts in vivo through suppression of Ki-67 expression and enhancement of tumor cell apoptosis rates. Cumulatively, the current findings demonstrate the successful construction of a recombinant immunotoxin capable of accurately targeting c-Met-positive human hepatoma cell lines both in vitro and in vivo, providing a novel compound with potential for applications as an alternative therapy for c-Met-positive cancer management.
    [Abstract] [Full Text] [Related] [New Search]