These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Stochastic analysis of complex reaction networks using binomial moment equations.
    Author: Barzel B, Biham O.
    Journal: Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):031126. PubMed ID: 23030885.
    Abstract:
    The stochastic analysis of complex reaction networks is a difficult problem because the number of microscopic states in such systems increases exponentially with the number of reactive species. Direct integration of the master equation is thus infeasible and is most often replaced by Monte Carlo simulations. While Monte Carlo simulations are a highly effective tool, equation-based formulations are more amenable to analytical treatment and may provide deeper insight into the dynamics of the network. Here, we present a highly efficient equation-based method for the analysis of stochastic reaction networks. The method is based on the recently introduced binomial moment equations [Barzel and Biham, Phys. Rev. Lett. 106, 150602 (2011)]. The binomial moments are linear combinations of the ordinary moments of the probability distribution function of the population sizes of the interacting species. They capture the essential combinatorics of the reaction processes reflecting their stoichiometric structure. This leads to a simple and transparent form of the equations, and allows a highly efficient and surprisingly simple truncation scheme. Unlike ordinary moment equations, in which the inclusion of high order moments is prohibitively complicated, the binomial moment equations can be easily constructed up to any desired order. The result is a set of equations that enables the stochastic analysis of complex reaction networks under a broad range of conditions. The number of equations is dramatically reduced from the exponential proliferation of the master equation to a polynomial (and often quadratic) dependence on the number of reactive species in the binomial moment equations. The aim of this paper is twofold: to present a complete derivation of the binomial moment equations; to demonstrate the applicability of the moment equations for a representative set of example networks, in which stochastic effects play an important role.
    [Abstract] [Full Text] [Related] [New Search]