These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Macroscopic description of nonequilibrium effects in thermal transpiration flows in annular microchannels.
    Author: Taheri P, Bahrami M.
    Journal: Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036311. PubMed ID: 23031017.
    Abstract:
    Thermal transpiration flow of rarefied gases in annular channels is considered where the driving force for the flow is a temperature gradient applied in the channel walls. The influence of gas rarefaction, aspect ratio of the annulus, and surface accommodation coefficient on mass and heat transfer in the process are investigated. An analytical approach to the problem is conducted based on linearized Navier-Stokes-Fourier (NSF) and regularized 13-moment (R13) equations, and a closed-form expression for Knudsen boundary layers is obtained. The results are compared to available solutions of the Boltzmann equation to highlight the advantages of the R13 over the NSF equations in describing nonequilibrium effects in this particular thermally driven flow. Through comparisons with kinetic data, it is shown that R13 equations are valid for moderate Knudsen numbers, i.e., Kn<0.5 where NSF equations fail to describe the flow fields properly.
    [Abstract] [Full Text] [Related] [New Search]