These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Limitation of discharge capacity and mechanisms of air-electrode deactivation in silicon-air batteries.
    Author: Jakes P, Cohn G, Ein-Eli Y, Scheiba F, Ehrenberg H, Eichel RA.
    Journal: ChemSusChem; 2012 Nov; 5(11):2278-85. PubMed ID: 23033259.
    Abstract:
    The electrocatalytical process at the air cathode in novel silicon-air batteries using the room-temperature ionic liquid hydrophilic 1-ethyl-3-methylimidazolium oligofluorohydrogenate [EMI⋅2.3 HF⋅F] as electrolyte and highly doped silicon wafers as anodes is investigated by electrochemical means, X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR) spectroscopy. The results obtained by XPS and EPR provide a model to describe the limited discharge capacity by means of a mechanism of air-electrode deactivation. In that respect, upon discharge the silicon-air battery's cathode is not only blocked by silicon oxide reduction products, but also experiences a major modification in the MnO₂ catalyst nature. The proposed modification of the MnO₂ catalyst by means of a MnF₂ surface layer greatly impacts the Si-air performance and describes a mechanism relevant for other metal-air batteries, such as the lithium-air. Moreover, the ability for this deactivation layer to form is greatly impacted by water in the electrolyte.
    [Abstract] [Full Text] [Related] [New Search]