These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Low-sodium dietary approaches to stop hypertension diet reduces blood pressure, arterial stiffness, and oxidative stress in hypertensive heart failure with preserved ejection fraction. Author: Hummel SL, Seymour EM, Brook RD, Kolias TJ, Sheth SS, Rosenblum HR, Wells JM, Weder AB. Journal: Hypertension; 2012 Nov; 60(5):1200-6. PubMed ID: 23033371. Abstract: Recent studies suggest that oxidative stress and vascular dysfunction contribute to heart failure with preserved ejection fraction (HFPEF). In salt-sensitive HFPEF animal models, diets low in sodium and high in potassium, calcium, magnesium, and antioxidants attenuate oxidative stress and cardiovascular damage. We hypothesized that the sodium-restricted Dietary Approaches to Stop Hypertension diet (DASH/SRD) would have similar effects in human hypertensive HFPEF. Thirteen patients with treated hypertension and compensated HFPEF consumed the DASH/SRD for 21 days (all food/most beverages provided). The DASH/SRD reduced clinic systolic (155-138 mm Hg; P=0.02) and diastolic blood pressure (79-72 mm Hg; P=0.04), 24-hour ambulatory systolic (130-123 mm Hg; P=0.02) and diastolic blood pressure (67-62 mm Hg; P=0.02), and carotid-femoral pulse wave velocity (12.4-11.0 m/s; P=0.03). Urinary F2-isoprostanes decreased by 31% (209-144 pmol/mmol Cr; P=0.02) despite increased urinary aldosterone excretion. The reduction in urinary F2-isoprostanes closely correlated with the reduction in urinary sodium excretion on the DASH/SRD. In this cohort of HFPEF patients with treated hypertension, the DASH/SRD reduced systemic blood pressure, arterial stiffness, and oxidative stress. These findings are characteristic of salt-sensitive hypertension, a phenotype present in many HFPEF animal models and suggest shared pathophysiological mechanisms linking these 2 conditions. Further dietary modification studies could provide insights into the development and progression of hypertensive HFPEF.[Abstract] [Full Text] [Related] [New Search]