These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Selective pharmacological inhibition of phosphoinositide 3-kinase p110delta opposes the progression of autoimmune diabetes in non-obese diabetic (NOD) mice.
    Author: Durand CA, Richer MJ, Brenker K, Graves M, Shanina I, Choi K, Horwitz MS, Puri KD, Gold MR.
    Journal: Autoimmunity; 2013 Feb; 46(1):62-73. PubMed ID: 23039284.
    Abstract:
    During the progression of autoimmune (type 1) diabetes, T cells and macrophages infiltrate the pancreas, disrupt islet function, and destroy insulin-producing beta cells. B-lymphocytes, particularly innate like B-cell populations such as marginal zone B cells and B-1 cells, have been implicated in many autoimmune diseases, and non-obese diabetic (NOD) mice that lack B cells do not develop spontaneous autoimmune diabetes. Hence, inhibitors of B cell signaling pathways could be useful for limiting the autoimmune processes that contribute to type 1 diabetes. Signaling via phosphoinositide 3-kinase (PI3K) regulates many cellular processes. The p110δ isoform of PI3K is expressed primarily in cells of hematopoietic origin and the catalytic activity of p110δ is important for B cell migration, activation, proliferation, and antigen presentation. Because innate-like B cells are particularly sensitive to inhibition of p110δ activity, and p110δ inhibitors also suppress pro-inflammatory functions of other cell types that contribute to autoimmunity, we tested whether a p110δ inhibitor could delay the onset or reduce the incidence of autoimmune diabetes in NOD mice. We found that long-term preventative treatment of pre-diabetic NOD mice with IC87114, a highly selective small molecule inhibitor of p110δ, reduced the infiltration of inflammatory cells into the pancreatic islets and, accordingly, delayed and reduced the loss of glucose homeostasis. Moreover in a therapeutic treatment mode, IC87114 treatment conferred prolonged protection from progression to overt diabetes in a number of animals. These findings suggest that PI3Kδ inhibitors could be useful for managing type 1 diabetes.
    [Abstract] [Full Text] [Related] [New Search]