These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Application of threshold-bias independent analysis to eye-tracking and FROC data. Author: Chakraborty DP, Yoon HJ, Mello-Thoms C. Journal: Acad Radiol; 2012 Dec; 19(12):1474-83. PubMed ID: 23040503. Abstract: RATIONALE AND OBJECTIVES: Studies of medical image interpretation have focused on either assessing radiologists' performance using, for example, the receiver operating characteristic (ROC) paradigm, or assessing the interpretive process by analyzing their eye-tracking (ET) data. Analysis of ET data has not benefited from threshold-bias independent figures of merit (FOMs) analogous to the area under the receiver operating characteristic (ROC) curve. The aim was to demonstrate the feasibility of such FOMs and to measure the agreement between FOMs derived from free-response ROC (FROC) and ET data. METHODS: Eight expert breast radiologists interpreted a case set of 120 two-view mammograms while eye-position data and FROC data were continuously collected during the interpretation interval. Regions that attract prolonged (>800 ms) visual attention were considered to be virtual marks, and ratings based on the dwell and approach-rate (inverse of time-to-hit) were assigned to them. The virtual ratings were used to define threshold-bias independent FOMs in a manner analogous to the area under the trapezoidal alternative FROC (AFROC) curve (0 = worst, 1 = best). Agreement at the case level (0.5 = chance, 1 = perfect) was measured using the jackknife and 95% confidence intervals (CI) for the FOMs and agreement were estimated using the bootstrap. RESULTS: The AFROC mark-ratings' FOM was largest at 0.734 (CI 0.65-0.81) followed by the dwell at 0.460 (0.34-0.59) and then by the approach-rate FOM 0.336 (0.25-0.46). The differences between the FROC mark-ratings' FOM and the perceptual FOMs were significant (P < .05). All pairwise agreements were significantly better then chance: ratings vs. dwell 0.707 (0.63-0.88), dwell vs. approach-rate 0.703 (0.60-0.79) and rating vs. approach-rate 0.606 (0.53-0.68). The ratings vs. approach-rate agreement was significantly smaller than the dwell vs. approach-rate agreement (P = .008). CONCLUSIONS: Leveraging current methods developed for analyzing observer performance data could complement current ways of analyzing ET data and lead to new insights.[Abstract] [Full Text] [Related] [New Search]