These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Oxygen uptake kinetics at work onset: role of cardiac output and of phosphocreatine breakdown.
    Author: Francescato MP, Cettolo V, di Prampero PE.
    Journal: Respir Physiol Neurobiol; 2013 Jan 15; 185(2):287-95. PubMed ID: 23043876.
    Abstract:
    The hypothesis that variability in individual's cardiac output response affects the kinetics of pulmonary O₂ uptake (VO₂) was tested by investigating the time constants of cardiac output (Q) adjustment (τ(Q)), of PCr splitting (τ(PCr)), and of phase II pulmonary O₂ uptake (τ(VO₂)) in eight volunteers. VO₂, Q, and gastrocnemius [PCr] (by (31)P-MRS) were measured at rest and during low intensity two-legged exercise. Steady state VO₂ and Q increased (ΔVO₂(s) = 182 ± 58 mL min⁻¹; ΔQ = 1.3 ± 0.4 L min⁻¹), whereas [PCr] decreased significantly (21 ± 8%). τ(VO₂), τ(PCr) and τ(Q) were significantly different from each other (38.3 ± 4.0, 23.9 ± 2.5, 11.6 ± 4.6 s, respectively; p<0.001). τ(PCr) assumed to be equal to the time constant of VO₂ at the muscle level (τ(mVO₂)), was not related to τ(Q), whereas τ(VO₂) and τ(Q) were significantly related (p<0.05) as were τ(VO₂) and τ(PCr) (p<0.05). Venous blood O₂ stores changes, as determined from arterio-to-mixed-venous O₂ content, were essentially equal to those estimated as (τ(VO₂)-τ(PCr))·ΔVO₂(s). This suggests that cardiac output responses affect O₂ stores utilization and hence τ(VO₂) : thus τ(VO₂) is not necessarily a good estimate of τ(mVO₂).
    [Abstract] [Full Text] [Related] [New Search]