These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sensitive detection of transcription factors by isothermal exponential amplification-based colorimetric assay. Author: Zhang Y, Hu J, Zhang CY. Journal: Anal Chem; 2012 Nov 06; 84(21):9544-9. PubMed ID: 23050558. Abstract: Transcription factors regulate gene expression by binding to specific DNA sequences within the regulatory regions of genes and have become potential targets in clinical diagnosis and drug development. However, traditional approaches for the detection of transcription factors are usually laborious and time-consuming with a low sensitivity. Here, we develop an isothermal exponential amplification reaction (EXPAR)-based colorimetric assay for simple and sensitive detection of transcription factor NF-κB p50. In this assay, the presence of NF-κB p50 is converted to the reporter oligonucleotides through protein-DNA interaction, exonuclease III digestion, and isothermal exponential amplification. The subsequent sandwich hybridization of the reporter oligonucleotides with the gold nanoparticle (AuNP)-labeled DNA probes generates a red-to-purple color change, allowing the visual detection of NF-κB p50 with the naked eye. Notably, this method converts the detection of transcription factors to the detection of DNA without the requirement of DNA marker-linked antibodies in the case of immuno-PCR and can sensitively measure NF-κB p50 with a detection limit of 3.8 pM, which has improved by as much as 4 orders of magnitude as compared with the conventional AuNP-based colorimetric assay and the label-free luminescence assay and up to 4 orders of magnitude as compared with fluorescence resonance energy transfer (FRET)-based assay as well. Importantly, this method can be used to measure TNF-α-induced endogenous NF-κB p50 in HeLa cell nuclear extracts and might be further applied for the detection of various DNA-binding proteins and aptamer-binding molecules.[Abstract] [Full Text] [Related] [New Search]