These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Electrospray ionization tandem mass spectrometry of protonated and alkali-cationized Boc-N-protected hybrid peptides containing repeats of D-Ala-APyC and APyC-D-Ala: formation of [b(n-1) + OCH3 + Na]+ and [b(n-1) + OH + Na]+ ions.
    Author: Raju G, Purna Chander C, Srinivas Reddy K, Srinivas R, Sharma GV.
    Journal: Rapid Commun Mass Spectrom; 2012 Nov 30; 26(22):2591-600. PubMed ID: 23059875.
    Abstract:
    RATIONALE: Differentiation and structural characterization of positional isomers of non-natural amino acid hybrid peptides by using electrospray ionization tandem mass spectrometry (ESI-MS(n) ) is desirable because of their fundamental importance from the view point of peptide mass spectrometry and also of their increasing importance in the area of research towards biomedical and material applications; hence, the present study is undertaken. METHODS: Electrospray ionization ion-trap tandem mass spectrometry (ESI-MS(n)) was used to characterize and differentiate three pairs of positional isomers of Boc-N-protected hybrid peptides containing repeats of D-Ala-APyC and APyC-D-Ala (D-Ala = D-alanine and APyC = trans-3-aminopyran-2-carboxylic acid). RESULTS: ESI-MS(n) spectra of protonated and alkali-cationized positional isomeric peptides display characteristic fragmentation involving the peptide backbone, the Boc group, and the side chain. It is observed that abundant rearrangement ions [b(n-1) + OCH(3) + Na](+) or [b(n-1) + OH + Na](+) are formed when D-Ala is present at C-terminus and the presence of APyC at the C-terminus inhibits the formation of rearrangement ions. In addition, abundant b(n-1)(+) ions are formed, presumably with stable oxazolone structures, when the C-terminus of b(n-1) (+) ions possessed D-Ala. CONCLUSIONS: The present study demonstrates that ESI tandem mass spectrometry is very useful for differentiating positional isomers of hybrid peptides containing D-Ala and APyC amino acids. While the protonated peptides give rise to characteristic sequencing ions, the cationized peptides produce additional rearrangement ions ([b(n-1) + OCH(3) + Na](+) and [b(n-1) + OH + Na](+)) which helps distinguish between the presence of D-Ala and APyC amino acids at the C-terminus.
    [Abstract] [Full Text] [Related] [New Search]