These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Plasmodium falciparum endoplasmic reticulum-resident calcium binding protein is a possible target of synthetic antimalarial endoperoxides, N-89 and N-251.
    Author: Morita M, Sanai H, Hiramoto A, Sato A, Hiraoka O, Sakura T, Kaneko O, Masuyama A, Nojima M, Wataya Y, Kim HS.
    Journal: J Proteome Res; 2012 Dec 07; 11(12):5704-11. PubMed ID: 23061985.
    Abstract:
    The endoperoxide artemisinin is a current first-line antimalarial and a critical component of the artemisinin-based combination therapies (ACT) recommended by WHO for treatment of Plasmodium falciparum, the deadliest of malaria parasites. However, recent emergence of the artemisinin-resistant P. falciparum urged us to develop new antimalarial drugs. We have shown that synthetic endoperoxides N-89 and its hydroxyl derivative N-251 had high antimalarial activities both in vivo and in vitro. However, the mechanisms including the cellular targets of the endoperoxide antimalarials are not well understood. Thus, in this study, we employed chemical proteomics to survey potential molecular targets of endoperoxides by evaluating P. falciparum proteins capable to associate with endoperoxide structure (N-346, a carboxyamino derivative of N-89). We also analyzed the protein expression profiles of malaria parasites treated with N-89 or N-251 to explore possible changes associated with the drug action. From these experiments, we found that P. falciparum endoplasmic reticulum-resident calcium binding protein (PfERC) had high affinity to the endoperoxide structure (N-346) and was decreased by treatment with N-89 or N-251. PfERC is a member of CREC protein family, a potential disease marker and also a potential target for therapeutic intervention. We propose that the PfERC is a strong candidate of the endoperoxide antimalarial's target.
    [Abstract] [Full Text] [Related] [New Search]