These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Processes involved in sweeping under inhomogeneous electric field conditions as sample enrichment procedure in micellar electrokinetic chromatography.
    Author: El-Awady M, Huhn C, Pyell U.
    Journal: J Chromatogr A; 2012 Nov 16; 1264():124-36. PubMed ID: 23062880.
    Abstract:
    Sweeping under inhomogeneous electric field conditions has been described as a process that includes stacking or destacking of the micelles when entering the sample zone, sweeping of analytes by the stacked or destacked micelles, and destacking or stacking of the swept analyte zone. However, there is ongoing debate that not only the retention factor of the analyte but also the electric conductivity of the sample solution or the concentration of an added salt can have an impact on the enrichment efficiency. Revisiting the equations describing sweeping, a factor θ (phase ratio shift factor) is defined to quantitatively describe the change of the retention factor between the sample and separation zones. The influence of the sample matrix composition on the experimentally obtained sweeping efficiency is studied with SDS as pseudostationary phase taking parabens, benzamide and anilines as model analytes. To this end, a robust and reliable method for the assessment of the sweeping efficiency is developed. The values obtained via this method are very precise and agree well with theoretically predicted ones. The results obtained for varied buffer concentration and varied concentration of NaCl in the sample solution show that under the conditions of our experimental study, the approximation of assuming θ to be equal to the reciprocal value of the field strength enhancement factor γ is valid. Accordingly, the sweeping efficiency for neutral analytes is independent of the electric conductivity of the sample matrix. It is also shown that under specific conditions unexpectedly high enrichment factors are obtained which are ascribed to the focusing of neutral analytes by micellar transient isotachophoresis (mtITP). The results obtained in this study can be used as a guide for better understanding of the sweeping process and the factors affecting the sweeping efficiency in micellar electrokinetic chromatography (MEKC).
    [Abstract] [Full Text] [Related] [New Search]